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PREFACE

The modern control and programming problems studied in

this memorandum are a common mathematical formulation of situa-

tions that arise in diverse areas. Common examples occur in

the control of aircraft and missile regimes, control of reactors,

and control of inventories. These problems have been studied

at RAND over a period of years by various methods, and have

been the subject of extensive study by Soviet mathematicians

as well. The present memorandum studies these problems from

the point of view of the calculus of variations. The relation-

ship of this study to previous RAND work and some of the Soviet

work is discussed.

This paper is scheduled to be published in The Journal

of Mathematical Analysis and Applications.
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SUMMARY

It is shown how a fairly general control problem, or pro-

gramming problem, with constraints can be reduced to a special

type of classical Bolza problem in the calculus of variations.

Necessary conditions from the Bolza problem are translated into

necessary conditions for optimal control. It is seen from

these conditions that Pontryagin's maximum principle is a trans-

lation of the usual Weierstrass condition, and is applicable

to a wider class of problems than that considered by Pontryagin.

The differentiability and continuity properties of the value

of the control are established under reasonable hypotheses on

the synthesis, and it is shown that the value satisfied the

Hamilton-Jacobi equation. As a consequence, a rigorous proof

of a functional equation of Bellman is obtained and is shown

to be valid for a much wider class of problems than heretofore

considered. A sufficiency theorem for the synthesis of control

is also given.
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VARIATIONAL METHODS IN PROBLEMS OP
CONTROL AND PROGRAMMNG

1. INTRODUCTION

A controlled, or programmed, system is one for which the

state at time t is represented by a real n-dimensional vector

x(t) - (xl(t), ... , xn(t)) that is determined by a system of

differential equations and initial conditions,

dx i  o(t,x,u), x (to) - x, I - i, -.e, n,(1 ) d-T- " "0..

where u - (ul (t), ... , um(t)). The m-dimensional vector u(t)

is called the control function, or control, or the program for

the system; it is usually required to satisfy constraints

(1.2) RJ('t,x,u) ;> 0, j - i, ... , re

The problem of optimal control, or the programming problem, is

to choose the control u(t) so as to bring the system from the

given initial state to a terminal state (tlxl), or one of a

collection of terminal states ((tl,xl)) ,, in such a way as to

minimize (or maximize) a functional

ti

(1.3) J(u) * g(tlXL) +V f(t,x,u)dt,

to

where g is a function defined on the set of terminal states

and the integral is evaluated along the solution of (1.1)

corresponding to the choice of u(t). A more complete and

precise statement of the problem will be given in Sec. 2.
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It is generally recegnized that in the absence of the

constraints (1.2), control problems, as usually formulated,

are special cases of the problem of Bolza in the calculus of

variations. In attacking problems in which constraints of the

form (1.2) are present, as well as constraints of the form

tl

(1.4) 1  Yk(tx,u)dt . Ck :, k - 1, .,., K,

to

several avenues have been explored. One is the "maximum

principle" developed by Pontryagin and his collaborators

Boltyanski and Gamkrelidze (13] for problems of the following

type. The constraints are independent of x and require u

to lie in a closed set, the function g is absent, the terminal

state xI is a prescribed vector, and the terminal time is

arbitrary. An extension of the maximum principle to problems

in which the time of termination tI is fixed, x1  is free,

and g is a linear function of the coordinates was given by

Rozono;r (11].

Another approach, which is formal and heuristic in charac-

ter, is the dynamic-programming argument of Bellman (1], who

presents a functional equation that the value of the minimum

as a function of initial position must satisfy. The terminal

condition in this class of problems has t1 fixed and xI

free. Rozonoer [l4] has rigorously established the validity

of the functional equation presented by Bellman for those

problems in this class in which



RM-2888
3

g W Z Cx(t ,).i-I

A different set of techniques has been used in dealing

with linear systems (1.1). The problem of determining a control

u(t), subject to the constraints [ui(t)I . 1, i - i, *.., m,

that brings x(t) to 0 in minimum time was studied for

systems with

n mi - I ajjx + I bijuj-I j-l

by Bushaw (5], Bellman, Glicksberg, and Gross [2], and Gamkrelidze

[6]. The problem of determining u so as to minimize the time

required for x(t) to hit a moving particle z(t) for linear

systems in which aij and bij are functions of time was

studied by Krasovskii (8] and LaSalle [10]. The paper by

LaSalle gives a brief survey of the other papers cited in this

paragraph. Krasovskii [9] has considered the last problem for

systems (1.1) of the form

G - fi(tx) + bi(t)u.

In the first part of this paper we shall show how a

fairly general control problem with constraints can be reduced

to a special type of classical Bolza problem. Necessary

conditions from the Bolza problem will be translated into

necessary conditions for optimal control. These conditions

give more information than the necessary conditions presented
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by the authors cited, and are applicable to wider classes of

problems. For example, it will, be seen that the maximum

principle is a restatement of the Weierstrass condition in the

calculus of variations and is applicable to more general problems

than those considered in [13] and [14]. Results on "bang-bang"

control can be derived from Corollaries 1 and 2 of Theorem 2,

but we shall not develop this topic here.

Theorem 2 of the present paper, which is the main theorem

concerning the necessary conditions, was stated in slightly

different form by Hestenes (7] in connection with aircraft

climb problems, but was never published by him. Because of

the relative unavailability of (7], we shall present the proof

of Theorem 2. The constraint conditions of the present paper

are slightly different from those of Hestenes. We also consider

the case of discontinuous f, 0 , and R i , and give simple

criteria for normality in a special class of problems.

In the second part of the paper we study the function

W(t,x), which is defined as the value of the minimum (or

maximum) of (1.3) as a function of initial position. We deter-

mine the differentiability properties of W under reasonable

assumptions on the synthesis of control, and show that in its

regions of differentiability the function W satisfies the

Hamilton-Jacobi equation. By combining this equation with the

Weierstrass condition (or maximum principle), we can rigorously

establish the functional equation of Bellman [1] and obtain a

statement about its regions of validity for a very general

class of problems.
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Our last theorem is a sufficiency theorem that is useful

in synthesizing the control. This theorem is a variL t of the

standard sufficiency theorem in the calculus of variations. A

similar theorem was stated by Breakwell (4]; his statement,

however, needs an additional hypothesis to be valid, and his

proof is formal.

We conclude our introductory remarks with the observation

that problems in which constraints of the form (1.4) are present

can be reduced to problems without these constraints by the

introduction of new state variables and associated initial and

terminal conditions as follows:

d~n+k knknkk

- 9 (t,x,u), xn+k(to) 0, xnk(t l ) Ck

km 1 , ... , K.

2. NOTATION AND STATEMENT OF PROBLEM

Vector matrix notation will generally be used. Vectors

and matrices will be denoted by single letters. Superscripts

will be used to denote the components of a vector; subscripts

will be used to distinguish vectors. Vectors will be written

as matrices consisting of either one row or one column. We

shall not use a transpose symbol to distinguish between the two

usages, as it will be clear from the context how the vector is

to be considered. If A is a matrix of m rows and n

columns, x is an m-dimensional vector, and y is an

n-dimensional vector, then in the product xA, x must be a
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row matrix, and in the product AY, y must be a column matrix.

Thus we write the inner product of two vectors x and y

simply as xy; a quadratic form with matrix A we write as

xAx.

The operator (d/dt) will generally be denoted by a prime.

Thus, the system (1.1) will be written as

(1.1) x' - G(t,xu), x(t0 ) - xi s

and the constraints (1.2) as R(t,x,u) > 0. (A vector is non-

negative if and only if every component is nonnegative.) If

z(t,x,u) is a vector-valued function that is differentiable

on a region J of (tx,u) space, we denote the matrix of

partial derivatives ( zi/ xJ) by Zx; the symbol Zu has

similar meaning. For real-valued functions Z(t,x,u), the

symbols Zx and Zu represent vectors of partial derivatives.

We denote the determinant of a square matrix A by IhAII.

Let Obe a bounded region of (n + 1)-dimensional (t,x)

space and let be a region of m-dimensional u space. Let

Ox 7Z. Let bbe a manifold of class C", of dimension

p .n, lying in , and given parametrically by equations

(2.1) t - tl(a), x- Xl(-),

where a - (01, ... O P ) ranges over an open cube Zin

p-dimensional space. Points of V'will henceforth be denoted

as (tl,x!); we shall call the terminal manifold. Let
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f(t,x,u) be a real-valued function of class C" on let

g(a) be a real-valued function of class C" on -;U, and let

the vector-valued functions G(t,x,u) - (G , n) of (1.1)

and R(txu) - (R, .. , ) of (1.2) be of class C" on xi?.

Furthermore, let the constraint vector R satisfy the follow-

ing constraint conditions:

(i) If r > m, then at each point of A/at most m

components of R can vanish.
(2.2)

(ii)T At each point of 4 the matrix ( Ri/ u J ) , where

i ranges over those indices such that Ri(t,x,u) -.0

and J - 1, ... , m, has maximum rank.

Consider the class of all functions u - u(t) that are

piecewise C' (i.e., each component ui of u is piecewise

continuous and has piecewise continuous first and second

derivatives) on the closure of the projection of o'Yon the

t axis, and have range contained in 2. For each such u we

can obtain a continuous solution of (1.1) that defines a curve

K, with possible corners, in d. Let(2 be the subclass of

this class of functions u with the following properties:

(i) The curve K is defined and is interior to oefor

t< t < t., where (t1 ,xi ) = (tlx(tl)) is a point

of /, and K does not intersect tV for any

t o <_ t < t1 .

(ii) Along K, the constraints (1.2) are satisfied; i.e.,

R-(t ,x.(t,), u-(t)) >. Oi
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The class 2, which depends on (to,xo), is called the class

of admissible controls. For a given (toX 0 ) it may be void.

The problem of optimal control is to find an element

u * c& that minimizes (or maximizes) the functional

(2.3) J(u) - g(a) +f f(txu)dt

to

over all u e (Z, where the integral is taken along the curve

K corresponding to u, and a is the parameter value associ-

ated with (tl,Xl) - (tl,x(tl)). For definiteness we shall

henceforth assume that (2.3) is to be minimized.

We note that the problem of optimal control as presented

here is equivalent to the problem in which g w 0 or the

problem in which f 2 0. The equivalence of these problems

can be shown by making transformations similar to those used

to show the equivalence of the problems of Bolza, Lagrange, and

Mayer in the calculus of variations ([3], pp. 189-190).

3. THE EQUIVALENT BOLZA PROBLEMS

Let y = (yl ym) be an m-dimensional vector. To

the system (1.1) adjoin the system of differential equations

(3.1) y' - u, y(t 0 ) - 0.

The following problem of Bolza in (n + m + 1)-dimensional

(tx,y) space with differential inequalities as added side

conditions is clearly equivalent to the problem of optimal

control posed in Sec. 2.
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Problem I. Find an arc (x(t),y(t)) that minimizes

(3.2) g(a) + t  f(t,xy')dt

to

in the class of arcs that are piecewise C", that satisfy the

differential equations

(3.3) G(t,x,y') - x' - O,

the differential inequalities

(3.4) R(t,xy') > 0,

and the end conditions

X(t0 ) - X0, Y(t0 ) W YO" o,

(3-5) tiI=" tl(0), x1 " Xl(O),

Y* N y(tl) - n,

where 7jT- 1, ... , m)

By means of a device used by Valentine in (15], we obtain

the following problem of Bolza, which has no inequality side

conditions and is equivalent to Problem I.

Problem II. Find an arc (x(t),y(t),e(t)), where

R. (1l, .. 0, er), that minimizes (3.2) in the class of arcs

that are piecewise C", that satisfy the differential equations
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G(t,y') - X' 0)

(3 .6) (t,x,y') - (e)2 . 0

and the end conditions (3.5) and

(3.7) C(to) a u - 0, C(t1 ) a el

1 '2 31 2 r'l 2
where T = (-r .,T~ and' (e') = M R( ). ).

Let ue6be an optimal control, let K* be the corre-

sponding curve, and let x*(t) be the function defining K*,

for to K t Ktl. Let y*(t) denote the solution of (3.1)

for u - u .It follows from the preceding discussion that

(x* (t),y*(t)) satisfies Eqs. (3.3) - (3.5) and minimizes (3.2).

Hencel the arc defined by (x*(t),y*(t),(*(t)), where

q *t)12- R(tx*Y*,), e(to) w 0,

furnishes a minimum for Problem II. We denote this arc by
( Ox *g *

K.We assert that at every element (x*Sye ,x't 1
of K(2, the, equations (.)are independent; that is, the

matrix

(.8 ( -~ 0)

has rank (n + !r). along, 4,- where I is the, n-dimensional



R - 888
11

identity matrix and 2 -' is an r x r diagonal matrix with

entries 2 (RI)I on the diagonal, I - 1, ..., r. In order to

prove the assertion we first suppose that the first r1  rows,

0 < rI <_ r, of the submatrix (R , 0 - 2 E,) have elements

2 t' d 0, and the remaining rows have elements 2 ti . 0.

This can always be achieved by permuting rows and relabeling.

The matrix (3.8) now has the form

(Al D)

\A2 0'

where D is an (n + rl) by (n + r2 ) diagonal matrix with

nonzero entries on the diagonal and 0 is a zero matrix. The

matrix A2  consists of the last r - rI  rows of the matrix

Ry ,. For each of these rows, we have (, ) - 0. Consequently,

we have R (tpx*,y*t) = 0, i - rI + 1, ..., r. From (3.1) we

see that this is equivalent to R (t,,u*) - 0, for

i - r, + 1, ..., r. From the constraint conditions (2.2) it

follows that r - rI < m and that the matrix with elements

Ri/ uj,  i - r I + 1, r, J = ,, m, has rank r- r1

for (t,x*,u*) along K2 . Hence, it follows that A2  has

rank r - r and (3.8) has rank (n. + rl) + (r - rl) - n + r,

as required.

The above argument actually is not restricted to K2 ; it

shows that (3.8) has rank (n + r) at all elements

(txy, ,x',y',') for which (3.6) holds.
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4. NECESSARY CONDITIONS FOR PROBLEM II

Since K2 furnishes a minimum for Problem II and the

matrix (3.8) has rank (n + r) wherever Eqs. (3.6) hold, it

follows (Bliss [3], McShane [11]) that the following necessary

conditions hold along K(:

Theorem 1. There exist a constant X0 > 0, an n-dimen-

sional vector X(t), and an r-dimensional vector jL(t),

defined on the interval to <_ t < tl, such that (XoX(t),±(t))

is never zero and such that X(t) and 4(t) are continuous,

except perhaps at values of t corresponding to corners of

K , where they possess unique right-hand and left-hand limits.

Moreover, the function

(4.1) F(t,xy,e,x',y',', X0, X, ) - XoT + X(G - x') + 4(R - t2)

satisfies the following conditions along K 2:

(i) (Euler-Lagrange equations) Between corners of K

we have

dFP dF , dF 1

(d Fx-' dt "y dt . V

At, a corner, these equations hold for the unique one-sided limits.

(ia) (Weierstrass-Erdmann) At a corner of K2., Fx,, Fy,

and (F - x' Fx , - y' F P,. have well-defined,

one-sided limits that are equal.
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(ii) (Traneversality) At the end point

(tlx(t),y (t),(t)) of K., we have

(4.3) (F - x' ' ' - yl ,- t F,)ta + Px, Xl + Xe -O,

Fy. YIT - O, Ft. I t - 0.

(iii) (Weierstrass) For all (t,x,t,y,X',Y',') ,

(t,x, ,y,x',y',') and satisfying (3.6), the inequality

(4.4) 8(t,x4,,,x',y',,X',Y',',XO,.) >0

holds, where

6 =F(t,x,y, ,X',Y"',C') -F(,t,x,y,e,x',y',e')

- (X' - x')F x, - (Y' - y')y, - ( ' -

the functions Fx, and F, being evaluated at

(t,x,y, ,x',y',, 0, X,4), and the arguments (XOL,) being

omitted throughout.

(iv) (Clebsch) For every vector (r,p,K) ' 0, where

r (r , n , p = (P ., pm), and K (J X1 r

that is a solution of the linear system

(4.5) Gyp - Ir = o,

yRy. ,p - 2..K - 0,
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the following inequality holds:

r
(i&.6) Fxx I + Pp Fly7 p - 2 Z' 0.~)2~~

i-i

5. NECESSARY CONDITIONS FOR PROBLEM I

We now follow Valentine (15] and translate the necessary

conditions for Problem II Into necessary conditions for

Problem I. We first consider the Euler equations. From (4.1)

we get

(5 1) F 0FI1 241 t f *1

Hence it follows from the third equation in (4.2) that

ii Id( L t)/dt - 0 along K2 . This and the continuity ofI FI,

at corners of K2 imply that L t is constant along K.-

From the transversality condition (4.3) we get FtIr - 0;

from (3.7) we obtain -l " I, where I is the r x r

identity matrix. Therefore, we have F , - 0 at the right-

hand end point of (, and consequently - 0 along 1

It now followe from the second equation In (3,6) that along

(5.2) ,LR -o i -1, ., r.

A similar argument shows that along , we have Fy. = 0.

We now introduce the function

(5.3) H(t"x Y',, X) X0 f(t,x,y') + %G(t,xy').
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Clearly,

(5.4) F - H - Xx' + 4(R - 2

The following are immediate consequences of (5.4):

Fi x + 4Rx y YI= + LRy,

(5.5)
1x, -

Since Fy, - 0 along K, we see that along K we have

(5.6) Hy, + LRy, - 0.

prom (4.2) and (5.5), along K we also have

(5.7) X - - (H + IRx).

It follows from the vanishing of Fy, and F, along

K, and from (5.4), (5.5), and the second equation of (3.6),

that

(5.8) F- x' Fx' - Y y I '  I H

along K2 . Hence it follows that the transversality condition

becomes

(5.9) Xogc0 + Ht10 -'Xx 1a 0

The relationships used to establish (5.8) and the fact

that (t,x,Y',:') satisfies the second equation of (3.6)
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enable us to translate the Weierstrass condition (4.4) into

the condition

(5.10) H(t,x,Y',O 0 , ) > H(t,x,y',XO,X).

It is an immediate consequence of (5.4) that (4.6) becomes

r 1 i2
(5.11) P((H + LR)y,y,)p - 2 2 0.> O.

If R > 0 at a point of K2, then by (5.2), 4. 0. If

Ri - 0 at this point, let r- 0, let p - 0, and let K be

a vector with i-th component 1 and other components 0. Then

i
(r,p,x) 4 0; and since t = 0, (r,p,K) is a solution of

(4.5). Hence from (5.11) we get 4i < 0 at this point.

Consequently, we always have

4i < 0 along I, i - 1, ... , r.

Let (t,x,y) be a point of 4 such that at most r

where rI < m, components of R(t,x,y') vanish; we suppose

for definiteness that these are the first rI  components. It

follows from (2.2)-(ii) that the system of linear equations

m Ri .- 2eiK± - 0, i - 1, .0.,

has a solution in p and K - (KI  ) such that p d 0

and x - 0. It now follows from the second system of equations

in (3.,6) and the assumption that Rj > 0 for J > rl, that
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the system (4.5) has a solution (pr,K) such that p 0

and r = 0. Let J > r1. Since indices j > rI  correspond

to components Rj > O, it follows from (5.2) that J- 0 for

J > rI. Hence each term in the second summation in (5.11)

vanishes, and from (4.5) we have

(5.12) p((H + VR)yy,)p > 0

for any solution vector p of the system

(5.13) m - o,

The conclusion just stated holds, of course, even if m

components of R vanish. In that case, however, the system

(5.13) has only the trivial solution.

6. NECESSARY CONDITIONS FOR THE CONTROL PROBLEM

The following theorem, in which necessary conditions for

optimal control are given, is an immediate consequence of the

conclusion obtained in Sec. 5, and of the use of (3.1) to

Justify the replacing of the argument y' by u, wherever y'

occurs. The function H is now

H(t'xuA0 ,) - X0f(txu) +)

Theorem 2. Let u*E (2 be an optimal control, 3et K*

be the corresponding curve, and let x*(t) be: the functien
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defining K on [totl]. Then there exist a constant

X0 0_ 0, an n-dimensional vector X(t) defined and continuous

on [to,t1 ], and an r-dimensional vector 4(t) < 0 defined

and continuous on the interval [to,tl], except perhaps at

values of t corresponding to corners of K , where it

possesses unique right-hand and left-hand limits, such that

the vector (X0 ,x(t)) never vanishes, and such that the following

conditions are fulfilled:

Condition I. Along K the following equations hold:

(6.1) x'(t) - ,

(6.2) X'(t) = - (Hx + LRx)o

(6.3) Hu + LLRu  0,

(6.4) i Rl = 0, i = 1,

At the end point (t ,x*) of K the transversality condition

holds:

(6.5) X0gc + Htla - X - 0.

Along K , the function H is continuous.
@ * *

Condition II. For every element (t,x* ,u) of K and

every u such that u - u(t) for some u in 62, we ;have

(6.6) H(t,x * *,
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*

Condition III. At each point of K let R" denote the

vector formed from R by taking those components of R that

vanish at that point. Let e - (e1, ... , em) be a nonzero

solution vector of the linear system Rue - 0 at a point of

K Then e((H + IR)uu)e > 0 at this point.

Equations (6.1) - (6.4) are the Euler equations, Condition

II follows from the Weierstrass condition (5.10), and Condition

III follows from the Clebsch condition (5.12). The continuity

of H along K follows from the continuity of the left-hand

member of (5.8) along K2, and the continuity of X follows

from (5.5) and the continuity of Fx, (Weierstrass-Erdmann

corner conditions). The nonvanishing of (XOX) along K*

is established as follows. If (XOX) were zero at a point of

K * then from (6.3) we would have Lu - 0 at this point.

For the sake of definiteness, suppose that the indexing is such

that Ri - 0 for i =1, ... , rl, where by (2.2), r I <_ m.

Hence, by (6.4), we have .i = 0 for i > r1. Thus the

condition rR u = 0 reduces to a system of linear equations in
1 rlI k

p. , ... , 1 with coefficient matrix (R /auk ), i - 1, ... , r ,

k = I, .... , m. From (2.2) - (ii), this matrix has rank r1 .

Hence 1 = ... = ri. '0 is the only solution of the linear

system. Thus, we have shown that if (X0, X) is zero at a

point, then the vector (OX ,p) must also be zero, contradicting

the assertion of Theorem 1.
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If the constraints are specialized, then important

simplifications can be effected in the Euler equations.

Corollary 1. Let the constraints be of the form

Bi(t,x) < ui A'(t,x), ,

where Ai > Bi and each A' and B' is of class C" on

Then at each point of K we have

> 0 if u*i  Bi,

Hu 0 if B i < u*i < Ai ,; ~i< I I
< 0- 1-f u' A=M.IH1  A i - i, ... , m.

If we write the constraints as Ai - ui > 0 and

ui - Bi > 0, i = 1, ... , m, we obtain a 2m-dimensional con-

S-i i I istraint vector with components A - u and u - Bi . It

follows from the condition Ai > Bi and the form of the con-

straints that (2.2) is satisfied. The conclusion of the

corollary follows from (6.3) and (6.4) by straightforward

calculation and use of the condition 4 < 0.

Remark. If the i-th component of u is constrained only

from one side,, say ui < A(t,x), then H i - 0 if ui <A i

i i U
and H i < 0 if u1 - A1. Similar statements hold for

U
i I

Another important special case is one in which the con-

straints are independent of the state, that is, R(t,x,u) a

R(t,u). Since Rx - 0 in this case, we have the following

corollary:
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Corollary 2. If R is independent of x, then equation

(6.2),becomes

(6.2), - -

In the problem considered by Pontryagin 13], the con-

straints required u to lie in a fixed closed set, independent

of time t and position x. Equations (6.1), (6.2)', and

(6.6) constitute the maximum principle as stated by Pontryagin.

Our function H is the negative of Pontryagin's, so that his

maximum appears as a minimum in our paper. Note, however, that

the Euler equations and Condition II of Theorem 2, which is the

Weierstrass condition, give a minimum principle for a wider

class of problems.

Remark. Note that if the Ai  and Bi  of Corollary 1 are

constants, then the results of both corollaries are valid.

7. INTEGRABLE CONTROLS

Instead of considering functions u - u(t) that are

piecewise C", we can consider functions that are merely

assumed to be Lebesgue integrable. In this way we can define

a class of admissible controls a +, and we can look for an

optimal control u in 0+. The curves K corresponding to

functions u in a+ will be defined by absolutely continuous

functions x(t), and so will be rectifiable. We can reduce

the control problem with constraints to a Bolza problem with-

out constraints as we did before, except that the functions
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(x(t),y(t), (t)) are now absolutely continuous. To this

problem we can apply a theorem of McShane (Theorem 16.1, [12]).

We can then translate back to the original control problem and

obtain the result that the conclusions of Theorem 2, appropriately

modified, hold almost everywhere along a curve K corresponding

to a control u that minimizes (2.3) over all u in a+.
8., NORMALITY

A piecewise C" minimizing curve K , or equivalently

the corresponding curve K2  of Problem I, is said to be

normal if there are no sets of multipliers with X0 = 0. (See

[3], pp. 2135-219.) If the minimizing curve is normal, then the

multipliers can be chosen so that XO = 1, and with this choice

of X0 they are unique. If the curve is not normal, there

may be no neighboring curves that satisfy the differential

equations, constraints, and end conditions. Necessary and

sufficient conditions for normality are given in [3]. These

criteria applied to the present problem would involve variations

along K2 and would generally be difficult to apply in practice.,

We shall give a condition for normality in the control problem

that is sufficient, but not necessary. It is, however, easier

to apply in practice, and reduces to a very simple condition

in the special case that the terminal manifold .Tris n-dimensional.

At (tlxl), the end point of K*, let rI components

of R(tl,Xl,u (tl)) vanish. From (2.2) - (i) we get rI < m.
A

Let R denote the r1-dimensional vector formed from R by

taking those components of R that vanish at (ti,xl),
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let L be the vector formed from 4 by taking the corresponding

components. Then from (6.4) we have iJ(tl) - 0 for those

components of ± that are not in p.. Let M denote the n

by p matrix with typical element

at axi(8.1) (G II = l p L '

where the elements are evaluated at the end point of K . Let

C denote the (n + rl) by (m + p) matrix

G

where Gu  and are evaluated at (t1,X1 ).

If K is not normal, then there exists a set of

multipliers (X0, Xi) with X0 = 0. From (6.3) and (6.5) we

see that, at the end point (tl,x*) of K*, the vector

(,) is a solution of the linear system (X,$)C - 0. The

following theorem is now a consequence of a standard theorem

concerning the solutions of homogeneous linear systems and the

fact that (X,4) cannot be zero if X0 - 0:

Theorem 3. If the rank of C is (n + rl), then K*

is normal.

Note that C can have rank (n + rl) only when

(n + rl) < (m + p), and that Theorem 3 is not a necessary

condition.
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Corollary. If /is n-dimensional and K. is not tangent

to , then K is normal.

If t7 is n-dimensional, the matrix M is an n by n
A

matrix. By (2.2) - (ii), the rI  by m matrix Ru  has rank

r 1 . Hence, C has rank (n + rl) whenever M has rank n.

Since K is not tangent to the matrix

1 ltla

has rank n + I. If for each J - 1, ... , n we multiply the

first column of this matrix by - t l / aJ and add the result

to the J-th column, we get the matrix

Hence M has rank n and the corollary follows.

9. DISCONTINUOUS f, G, AND R

Let l7Lbe a manifold of dimension n, lying in and

dividing -Ointo two regions, such that some or all of the

functions f, 0, and R are discontinuous across M, Let

the discontinuity of a function be such that the function and

its derivatives have unique one-sided limits. Further, let

us assume that K intersects M at (t 2 ,x 2 ) - (t 2 ,x 2 (t))
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and is not tangent to Mbat this point. It can be shown by

appropriate modifications of the arguments in (3] (PP. 196--20)

that the multipliers X and p. of Problem II need not be

continuous at t - t1, but will have unique right-hand and

left-hand limits at (t2 ,x2 ) as will F and its various

partial derivatives when evaluated along "2 Although Fx,,

F and F , need not be continuous across 7, the

expression

(F - X1 Fx , - y' y - El Fe,)dt + Fx,dX2 + Fy dy 2

+ Ft,de2

has equal right-hand and left-hand limits along K at (t2 ,x2 )

for all differentials dt2 , dx2  on n and all dy2  and dt2 .

For the original control problem this translates into the

condition that

(9.1) (H+ - H)dt 2 - (X 7 )dX2 - 0

at (t 2 ,x 2 ), where the one-sided limits are evaluated along

K.

10. DEFINITION OF SYNTHESIS

Consider a point (tl,xl) of the p-dimensional terminal

manifold &, where 0 < p < n. Let denote a region in

(n - p)-dimensional space over which a vector p ranges. If

p - n, then 9 is the zero vector. Let u*(t;tl,Xl,,) be

a function defined in some interval [tot 1 ], where

- t:(t 1 ,x 1 ,q), such that the following condition holds:
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Assumption 1. (1) The function u is piecewise C"

on (to,tl], and its range lies in (ii) if u is

substituted into (6.1) (or equivalently into (1.1)), the

resulting differential equation

(10.1) x' - G(t,x,u (t;tlXlq)), x(t1 ) - xl )

has a continuous solution x*(t;tlxl,jp) on (toti] such

that (t,x*) lies in o'and R(t,x*,u*) > 0.

We denote the curve corresponding to x (t;tl,xl,,) by

K(tl,x1,(P).

We now suppose that the assumptions Just made for a

particular point (tl,xl) hold for all points (tl,XL) of

From (2.1), we have (tlXl) - (tl(a),xl(d)), where a

ranges over an open cube in a p-dimensional space. Let 9

be an n-dimensional vector defined as follows:

(10.,2) e. (a,,), ac t, ,e 7'..

We define functions

to(e ) - to(tl(q), xl(q), 4),
(1o.3)

tl(e) -tl(a),

and functions
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u*(t,e) . u (ttl(a),x1
(10.,4)

x (t, ) x

for a in , 4 in ' and to(8) <_ t < tl(8). The

differential equation (10.1) can now be written as

(10.5)- X"- G(t,x,u*(t,e)), X(ty(e)) - xl(a).

Clearly, x*(t,8) is a solution of (10.5). We shall denote

the curve K(tl,X l ,() by K(O).

Let !Q denote the domain of definition of u*(t,8) and

x (t,e); that is, the set of points (t,e) in (n + l)-

dimensional space with 9 as in (10.2) and to(e) < t < tl(e).

Clearly, Q has nonvoid interior, which we denote by Q It

follows from (2.1) and (10.3) that tl(8) defines a C"

manifold /i of dimension n in (t,e) space and that

is part of the boundary of Q. We also suppose that to(e)

defines a C" manifold of dimension n.

A set of functions

t = ti(O), i - 1, 2 ... , ap,

defined and C" on the region defined in (10.2), with tl(6)

as. in (10.3 ) and such that

tooe) < til~l(e) < ttl(.e) i - 1,.... cr 1
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will be said to induce a regular decomposition of si. Clearly,

each ti(e), i > 2, defines a C" manifold 7i of dimension

n lying in n0. We let ?+i denote the manifold defined

by t0(e). We define subregions ni of l0r as follows:

nii - E((t,e) r sjoit,+l(e) < t < tl(e)), 1 - 1, -..., a - 1.

We shall say that a function h(t,e) is piecewise C(k) on

£2 if on each subregion Si it agrees with a function

h(i)(te) that is c(k) on a., the closure of' ni.

Two more assumptions can now be stated.

Assumption 2. The function x (t,e) maps 00 in a

one-to-one fashicn onto a subregion 'e of the region af'in

(t,x)-space, and maps7l in a one-to-one fashion onto an

n-dimensional manifold that forms part of the boundary of 7.

Assumption 3. There exist functions ti(e) that induce

a regular decomposition of £2 such that: (i) The function

u* (t,e) is piecewise C" on f2. (ii) If f, G, or R

possess manifolds of discontinuity that lie in _e(as discussed

in Sec. 9), then each of these manifolds Is coincident with the

image of some set 77, i - 2, ..., a. (III) For each

component Rj of the constraint vector R, we have either

RJ(t,x*(t,e),u*(t,e)) - 0 on n., or, with the possible

exception of a finite number of points, Rj(tx*(t,9),u (t,0)) > 0

on £2



RM-2888
29

We shall denote the image of 0N by ai - 1, .. , a,

ii

and the image of '/J by 1i' i-2, ..., a + 1. The

function x also maps-' onto ,, whence we may set

1 / ' Note, however, that the mapping of" onto -

in general is not one-to-one.

Lemma 1. The function x (t,e) is continuous and is

piecewise C" on a. The sets ai , ... , a + I, are

manifolds of class C".

Let U(l) denote the function that is C" on a. and

that agrees with u on i" Let G(I) denote the function

that is C' on x A and that agrees with G on x (.

We may extend the function U(1 ) to a function u(l) that

has range in 4 and that is C" on a region containing l

(and hence U 1 and ;2 ) in its interior. We may also

extend G(1 ) to a function (1) that is C" on a region

containing -lj x Z/ in its interior. It now follows from

(10.5), the properties of tl(a) and xl(a), Assumption 3-(i),

and standard theorems about the behavior of solutions of

differential equations with respect to parameters and initial

conditions, that x*(t,e) is C" on _l" Since A2 is
V 2

given by t - t 2 (e) and x - x2 (e) W x(t 2 (9),6), it follows

that t2 (e) and x2 (e) are C". The argument Just given can

be repeated with the appropriate modifications on and -,

with t - t2 (e) and x - x2 (e) as the boundary conditions

for (10.5). We then see that x has the desired properties
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on and is continuous on n I , and that 3  is given

by t - t3(e), x = x 3(e) ! x* (t 3(e),e). Proceeding inductively

in this fashion, we can establish the desired properties for

We note that the sets i - 2, ..., a + 1, are given

by functions

(10.6) t = tl(e), x - xl(e) ar x*(tl(e),e),

and hence are manifolds of class C".

Assumption 4. For every subregion f2 I 0 at positive

distance from ' there exists a positive constant d(n2)

such that I1xe(t,e)I I > d(&1) on l (At boundary points

of 21 and at points of ' i > 2, the bounding away from

zero of the determinant is to be interpreted for the various

limits.)

It can be shown that if c/is n-dimensional, then the

assumption that each curve K(9) is not tangent to e"implies

the existence of a constant d > 0 such that I Ixe(t,e)I I > d

on all of S.

It is an immediate consequence of Assumption 4 and (10.6)

that the manifolds i = 2, ... , a + 1, have dimension

n. It also follows from Assumption 4 that the curves K(e)

are not tangent (from either side) to a manifold i' 2.

From Assumption 2, it follows that on 0 the relation

x- x (t,G) can be inverted to give a relation
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(1o.7) 9 - e(t,x),.

where e is a single-valued function on It further

follows from Lemma 1, Assumption 4, and the implicit-function

theorem that e is C" on each , i > 2, and on the set

- Since x *(t,e) is one-to-one, it fo.Llows that e
z X*

is continuous on . From the identity e - e(t,x (t,e)) it

follows that as (t,x) tends to along K(e), the function

e will tend to the value e. In general, e will not tend

to a unique limit at points of /. It can be shown, however,

that if t/is n-dimensional and the curves K(e) are not

tangent to -, then 9 is C" on as, well as on -7,

i , 2.

Assumption 5. (1) For every point (, - (,* )

in the control problem (2.3) with initial point (t,x)

has a unique solution in which the optimal control is u*(t,e),

T < t < t(8), and the corresponding curve is K(e). (ii)

There exists a multiplier vector (XO(e),x(t,e),(t,e)) along

each K(e) such that X - 1 and the functions Xl(e) a x(tl(8),e)
0

and xi(e) - gi(tl(e),e) are C' on x -e'.

The existence of multipliers along each K(e) follows

from Theorem 2; the assumption concerns the properties of

XO, kl, and 4i"

A function u*(t,e) such that Assumptions 1-5 hold will

be called a normal parametric synthesis of the control.
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Remark. If / is n-dimensional and each K(e) is not

tangent to 7, then (ii) follows from the Corollary of

Theorem 3 and the transversality condition (6.5).

Define

(1,0.8) u *(tx) = u*(t,e(t,x)).

It follows from the preceding discussion that U is C" on

each f, for i > 2, and is C" on 'l- 7 Along each

K(e), however, U*(t,x) does tend to a limit as i/is approached.

If is n-dimensional and the curves K(9) are not tangent
I-, * C"- *

to then U is C" on 1 as well. We call U a

normal synthesis of the control.

11. THE FUNCTIONS X, 4, AND L

Lemma 2. The functions X(t,6) and p(t,e) are piece-

wise C' on 0. Across every manifold 71 , i - 2, ..., a,

equation (9.1) holds. If f, G, and R are continuous across

then so is X(t,9).

Let denote the vector formed by taking those components

Ri of R such that RJ(t,x*(t,e),u*(t,e)) w 0 on " Let

A
p. be the vector obtained from p. by taking the corresponding

components. From (2.2)-(ii), it follows that Ru has maximum

uurank, say rI , on l" Let R be an r1  yr nonsingular
A

submatrix of R . Let H^ denote the vector obtained from
RU U

H by selecting the components corresponding to the columns ofU
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A used to obtain R In order to simplify the exposition

we shall assume that the same submatrix is nonsingular at all

points of i" It will be seen from the ensuing discussion

that this restriction can be easily overcome.

From (6.3), we get

(.1)(H)(A
uu

Since by (6.4) those components of v that are not included

in v vanish on ill we may write (6.2) along each K(8) as

follows:

(11.2) Xt(t,e)- -H x + (H)(Rj) R x(tl,e) -

where the arguments of the functions on the right-hand side are

(t,x*(t,e),u*(t,e)). A proof similar to that used in Lemma 1

can now be used to show that X(t,e) is of class C' on 1l"

It then follows from (11.1) that v is also C' on 2 Since

the other components of 4 vanish on 0 the vector 1± is

C' on Si"

The same arguments applied to "2, with Ru , R , H , and

A
p. appropriately redefined and with the proper initial data

X(t2 (e),e), show that X(t,e) and I(t,e) are C' on n2"

The initial data X(t2 (e),e) are defined by continuity or by

(9.1) if corresponds to a manifold of discontinuity of2

f, G, or R. Proceeding backwards in this fashion, we see

that X and 4 are piecewise C' on n and have the requisite

continuity properties.
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Define

(11.3) L(t,x) = X(t,e(t,x)), (t,x) E7e, i = a, ... , a.

We list the properties of L(t,x) in the following Lemma:

Lemma 3. The function L is C' on each -,

i - 2, ... , a, and on the set Moreover, if f, G,

and R are continuous across a manifold 7, i - 2, .o., a,

then so is L. Across a manifold 7 j,  (9.1) holds with X

replaced by L, where + now indicates a limit from the

interior of Ti- and - indicates a limit from the interior

of A. If is n-dimensional and the curves K(9) are not

tangent to /, then L is C' on 'l also.

The proof of this lemma, except for the next to the last

sentence, is an immediate consequence of Lemma 2 and the

properties of 9(t,x). It is clear from the properties of f,

G, X(t,e), x*(t,e), and u*(t,e) that H(t,x*(t,e),X(t,e),u*(te))

is continuous on each of the sets 2i U n. and i-i U 7T'

i = 2, ... , a. Hence, H(t,x,L,U) is continuous on each

'i U Z, and Ri I U 7%, i- 2, ... , a. If 7i is not

a manifold of discontinuity of f, G, or R, then by Theorem 2,

H is continuous across Z 4 along each K(9). Hence from the

continuity of H on Ri U 7i and Ri_1 U 1i it follows

that H is continuous across 7i' unrestrictedly in this
case. Since L is continuous across 7?j, (9.1) holds across

7~ unrestrictedly. A similar argument shows that if
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is a manifold of discontinuity of f, G or R, then (9.1)

holds across also without the restriction that the limits

be taken along K(e).

12. THE VALUE AND THE HAMILTON-JACOBI EQUATION

Let Assumptions 1 to 5 of Sec. 10 hold. Then we can define

a function W(t,x) on t by assigning to each point (t,x)

in 7C the value that the functional (2.3) with (toXo) - (tx)

takes along the optimal curve K(e) through (t,x). Thus we

have

-(12.1) w(t,x) - w(t,x*(t,e))

- g(a) + I f(t,x(t,e),u (t,e))dt,

t

where e and a are related by (10.2). We shall call W

the value function, or simply the value of the control problem.

We summarize the properties of W in the following theorem:

Theorem 4. The value W is continuous on is C

on each i '> 2, and is C" on , i- " On each 7C'

i = i, .... , a, we have

Wt(t,x) = - f(t,x, (t,x))- L(t,x)G(t,x,U(t,x)),

(12. .2),

Wx(t,x) - L(t,x).

At points of a manifold 7i' i > 2, (12.2) holds for the

one-sided limits. If is not a manifold of discontinuity
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of f, G, or R, then Wt and Wx  are continuous across

7/" Across every manifold , J 2 2, .,., a, the relation

+ dt W + dxj -Wt dt dx

t J - W ,J .

holds for all differentials dtj, dxj along 1.

Remark 1. If we substitute the second equation of (12.2)

into the first, we see that the Value satisfies the Hamilton-

Jacobi equation on each -fi .

Remark 2. It follows from the properties of L, U , and

8 that both Wt and Wx possess limits as (t,x) tends to

/along a curve K(O), even though in general Wt and Wx

do not possess limits as (t,x) tends to I. If, however,

fis n-dimensional and the curves K(e) are not tangent to

, then W is C" on

Remark 3. In Assumption 5-(ii) we supposed that along

each K(e) there was one set of multipliers with X0 = 1.

The second equation in (12.2) now shows that if there is one

such set satisfying the other requirements of Assumption 5,

then it must be unique.

The proof that we now give for Theorem 4 is an extension

of an argument used in the calculus of variations to prove

the invariance of Hilbert's integral in certain fields.

It is clear from (12.1) that W is continuous. Let

(12.3) t - TO(s), x - Xo (s)-, 0 < s , 1,
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define a curve r that does not intersect itself and that,

with the possible exception of end points, lies entirely within

some For definiteness we take i - a. It follows fro

Assumptions 2 and 4 that the system of equations

(12.4) To(S) - t, Xo(s) . x (te), 0 < s < 1,

defines a function e = 8(s) that is C" on (0,i]. Hence

if we traverse r as s goes from 0 to 1, we obtain a

family of curves K(s) - K(O(s)) by means of the function

x *(t,(s)), where To(s) < t < tl(s). Since the manifolds

j J - 1,, a, are given by (10.6), it follows that the

intersections of the curves K(s). with the manifolds

are given by
x = Ta(s) --t(*s)

(12.5)

x = Xj(s) a x*(t (9(s)),e(s)), J - 1, ... ,

The functions Tj and X, J = 2, ..., a, are clearly

C" on (0,1). For J = 2, ...., a, we can compute dX3/ds

from (12.5) in two ways,

(12.6) d 1 I *+ d *+ de Td

ds t ds + x0 Xt ds a ds'

where the superscript + indicates that we are taking limits

from the interior of ei-I and the superscript - indicates

limits from the interior of j. Equation (12.6) also holds
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for j - 0, without the superscripts + and -. From (12.5),

(10.2) - (10.5), and standard theorems on the differentiation

of solutions of differential equations with respect to initial

data, we get

(12.7) dT1  t d e(t1 ,9(s)) - (- M, 0),

where M is the matrix (8.1) and 0 is the n by (n -p)

zero matrix.

We now consider W along r. From (12.1) we obtain

W(To(S),Xo(S)) -

g(a(s)) + I TD s f (t,x* (t, e(s.)), u*(t, e(s)))dt.

T0 (S)

Hence dW/ds exists and is given by

dW [g ,+a dTlf dT_'--"f ~]- [f c-iTo(S
.,a ds-I'l: T1 (s) IfU

(12 .8)

-TT

1 (s)
+ I [( f s+) -+ jJ 2 T j(S ) f O (  s

where f/s - (fx x* + fu u*)(dS/di), the superscripts +

and - have the same meaning as in (12.6), and the arguments

of the functions are (t,eO(s)). From (6.2) we get
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f- - (X t + XGX + I±RX), and from (6.3) we have

f- - (XU+ Lu-Hence we obtain

Zs -Lt e +e~o + Gu ue)

(12-.9)

+ 11(R~ X + R~ u) de

The components of the vector t(R xe + R~ u,) can be

written as follows:

r kkk r k
(12.10) Z x (R~Xi + R k- j) 7- i 1 ~.. n.

If at a point (t,8) in 02, we have R~ (t,x* (t,e),u*(t,e)) > 0,

then from (6-4) we obtain, L(t,e) . 0. On the other hand,

since Rk (t,x*(t,e),u*(t,t9)) > 0 on 0, if Rk = 0 at (t,e)

then Rk , as a function of (t,e), has a minimum at this point.

Since (t,e) is interior to S1, 6Rk/ ei vanishes at this

point for all i - 1, ... , n.- Hence (12.10) is zero for all

(t,e).

If we set )G/)O = (G~ x0 + G~ ue) then from (10.5) we

,have Xt G/ e. Furthermore, we have X 9  Xt.Hence we

may write. (12.9) as

Substituting this expression into the integral in (12.8) and

performing the integration gives.
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S* -d. Tls *) *] de
- *x To(s) -2 [(x xF)- (T x) ds

If we now use (12.6), (12.7), and the relation xt - G, and

substitute the resulting expression into (12.8), using the

definition of H, we get

+HtW-xlH~ dT0

[(U _Ti(s) -[H L ds ds

ga [ Hxt ) j (:_+) dXdo
+ z LsHods (

J=2 ds Tj(s).

From (6.5) we see that the first square bracket vanishes. From

Theorem 2 and (9.1) it follows that every square bracket in
a
I vanishes. Hence, since F is arbitrary, we have
J-2

(12.11) dW- -H dT + L dX

for arbitrary differentials (dT, dX). The theorem is an

immediate consequence of (12.11), the properties of f, G, L,

and U *, Theorem 2, and (9.1).

13. AN EQUATION OF DYNAMIC PROGRAMMING

For each (t,x) in YfC, let 2(t,x) denote the set

of admissible controls u at (t,x). Since U is a normal
synthesis, it follows from (6.6) that for any (t,x) in ,

i - 1, .,., a, we have
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(13.1) H(t,x,L(t,x)U*(t,x)) - mn H(t,x,L(t,x)u).
u C 0(t,x)

If we apply (12.2) to (13.1), we see that on ii

(13.2) Wt -- min [f(t,x,u) + WxG(t,x,u)].u e € tx
If (t,x) lies on a manifold iC i - 1, ... , a, then the

relations (13.1) and (13.2) hold for the one-sided limits.

Equation (13.2) is the functional equation obtained

formally by Bellman [1] for control problems in which Jis

the n-dimensional manifold t1 - constant and f, G, and R

are C". We note that (13.2) holds for more general problems

than these. Since (13.1) is a restatement of the Weierstrass

condition, since (12.2) says that on each ei W satisfies

the Hamilton-Jacobi equation, and since Pontryagin's principle

derives from the Weierstrass condition, the relationship between

these items and (13.2) is clear.

We remark that computational schemes based directly on

(13.1) in the case that /is of dimension p, with p < n,

will encounter difficulties because, in general, Wt and Wx

do not exist at V. (See Remark 2, Theorem 4i)

14. THE PROBLEM OF SYNTHESIS

Let u'(t,$) and x*(t,8) be as in Assumptions 1 to 4,

and let us replace Assumption 5 by the following:

Assumption 6. Along each K(S), let equations (6.1) -

(6.5) hold with X 1, and let X(t,e) and p(t,9) have
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the properties described in Theorem 2. Let the functions XI(9)

and l(e) be as in Assumption 5. Let the function H be such

that (9.1) holds for all manifolds 'IJ, j - 2, ... ,

Assumption 6 consists of those consequences of Assumption

5 that enter into the discussion of Sec. 10. Hence, if we now

look upon W as being defined by (12.1), then Theorem 4 still

holds. In particular, (12.11) holds. Moreover, if we take r

to lie entirely on a manifold /i' i - 2, ... , a + 1, then

the arguments used to establish (12.11) for F in some

show that (12.11) holds for r on a manifold i' i > 2.

For curves, r on " a i the validity of (12.11) follows

from (6.5). Hence the integral

(14.1) fH(t,x,L U*)dT - L(t,x)dX

in independent of path in / for all curves F consisting of

a finite number of ares, each arc lying entirely in some 7e,

or on a manifold 'i - 1, ...

From the preceding discussion we see that Assumptions 1

to 4 and Assumption 6 determine for the contrel problem the

analogue of a field in the calculus of variations, with (14.1)

as the Hilbert invariant integral. The following theorem can

now be established by using the same argument as is used for

the analogous fundamental sufficiency theorem in the calculus of

variations:
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Theorem 5. Let Assumptions 1 to 4 and Assumption 6 hold.

Furthermore, let (6.6) hold on for u = U(t,x). Then

u (t,e) is a normal parametric synthesis of the control and

u (t,x) is a normal synthesis of the control.
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